РЕКЛАМА

Загрузка...

Рентгеновский снимок плазмы, повторяющей конфигурацию магнитного поля вокруг одной из активных областей.

Со́лнце — центральная и единственная звезда нашей Солнечной системы, вокруг которой обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль. Масса Солнца составляет 99,8 % от суммарной массы всей Солнечной системы. Солнечное излучение поддерживает жизнь на поверхности Земли, участвуя в фотосинтезе, и влияет на земную погоду и климат. Солнце состоит из водорода (~73 % от массы и ~92 % от объёма), гелия (~25 % от массы и ~7 % от объёма) и следующих, входящих в его состав в малых концентрациях, элементов: железа, никеля, кислорода, азота, кремния, серы, магния, углерода, неона, кальция и хрома. По спектральной классификации Солнце относится к типу G2V («жёлтый карлик»). Температура поверхности Солнца достигает 6000 K, поэтому Солнце светит почти белым светом, но из-за поглощения части спектра атмосферой Земли у поверхности нашей планеты этот свет приобретает жёлтый оттенок.' />

Солнце

Солнце

Рентгеновский снимок плазмы, повторяющей конфигурацию магнитного поля вокруг одной из активных областей.

Со́лнце — центральная и единственная звезда нашей Солнечной системы, вокруг которой обращаются другие объекты этой системы: планеты и их спутники, карликовые планеты и их спутники, астероиды, метеороиды, кометы и космическая пыль. Масса Солнца составляет 99,8 % от суммарной массы всей Солнечной системы. Солнечное излучение поддерживает жизнь на поверхности Земли, участвуя в фотосинтезе, и влияет на земную погоду и климат. Солнце состоит из водорода (~73 % от массы и ~92 % от объёма), гелия (~25 % от массы и ~7 % от объёма) и следующих, входящих в его состав в малых концентрациях, элементов: железа, никеля, кислорода, азота, кремния, серы, магния, углерода, неона, кальция и хрома. По спектральной классификации Солнце относится к типу G2V («жёлтый карлик»). Температура поверхности Солнца достигает 6000 K, поэтому Солнце светит почти белым светом, но из-за поглощения части спектра атмосферой Земли у поверхности нашей планеты этот свет приобретает жёлтый оттенок.

Солнечный спектр содержит линии ионизированных и нейтральных металлов, а также ионизированного водорода. В нашей галактике Млечный Путь насчитывается свыше 100 миллионов звёзд класса G2. При этом 85 % звёзд нашей галактики — это звёзды, менее яркие, чем Солнце (в большинстве своём это красные карлики, находящиеся в конце своего цикла эволюции). Как и все звёзды главной последовательности, Солнце вырабатывает энергию путём термоядерного синтеза гелия из водорода.
Солнце

Изображение Солнца в искуственных цветах, хорошо заметны группы пятен.


Солнце находится на расстоянии около 26 000 световых лет от центра Млечного Пути и вращается вокруг него, делая один оборот примерно за 225—250 миллионов лет. Орбитальная скорость Солнца равна 217 км/с - таким образом, оно проходит один световой год за 1400 земных лет, а одну астрономическую единицу за 8 земных суток. В настоящее время Солнце находится во внутреннем крае Рукава Ориона нашей Галактики, между Рукавом Персея (англ.) и Рукавом Стрельца (англ.), в так называемом «Местном межзвёздном облаке» (англ.) — области повышенной плотности, расположенной, в свою очередь, в имеющем меньшую плотность «Местном пузыре» (англ.) — зоне рассеянного высокотемпературного межзвёздного газа. Из звёзд, принадлежащих 50 самым близким звёздным системам в пределах 17 световых лет, известным в настоящее время, Солнце является четвёртой по яркости звездой (его абсолютная звёздная величина +4,83m).

Общие сведения

Солнце принадлежит к первому типу звёздного населения. Одна из распространённых теорий возникновения Солнечной системы предполагает, что её формирование было вызвано взрывами одной или нескольких сверхновых звёзд. Это предположение основано, в частности, на том, что в веществе Солнечной системы содержатся аномально большая доля золота и урана, которые могли бы быть результатом эндотермических реакций, вызванных этим взрывом, или ядерного превращения элементов путём поглощения нейтронов веществом массивной звезды второго поколения.
Излучение Солнца — основной источник энергии на Земле. Его мощность характеризуется солнечной постоянной — количеством энергии, проходящей через площадку единичной площади, перпендикулярную солнечным лучам. На расстоянии в одну астрономическую единицу (то есть на орбите Земли) эта постоянная равна приблизительно 1370 Вт/м².
Проходя сквозь атмосферу Земли, солнечное излучение теряет в энергии примерно 370 Вт/м², и до земной поверхности доходит только 1000 Вт/м² (при ясной погоде и когда Солнце находится в зените). Эта энергия может использоваться в различных естественных и искусственных процессах. Так, растения с помощью фотосинтеза перерабатывают её в химическую форму (кислород и органические соединения). Прямое нагревание солнечными лучами или преобразование энергии с помощью фотоэлементов может быть использовано для производства электроэнергии (солнечными электростанциями) или выполнения другой полезной работы. Путём фотосинтеза была в далёком прошлом получена и энергия, запасённая в нефти и других видах ископаемого топлива.
Ультрафиолетовое излучение Солнца имеет антисептические свойства, позволяющие использовать его для дезинфекции воды и различных предметов. Оно также вызывает загар и имеет другие биологические эффекты — например, стимулирует производство в организме витамина D. Воздействие ультрафиолетовой части солнечного спектра сильно ослабляется озоновым слоем в земной атмосфере, поэтому интенсивность ультрафиолетового излучения на поверхности Земли сильно меняется с широтой. Угол, под которым Солнце стоит над горизонтом в полдень, влияет на многие типы биологической адаптации — например, от него зависит цвет кожи человека в различных регионах земного шара.
Наблюдаемый с Земли путь Солнца по небесной сфере изменяется в течение года. Путь, описываемый в течение года той точкой, которую занимает Солнце на небе в определённое заданное время, называется аналеммой и имеет форму цифры 8, вытянутой вдоль оси север-юг. Самая заметная вариация в видимом положения Солнца на небе — его колебание вдоль направления север — юг с амплитудой 47° (вызванное наклоном плоскости эклиптики к плоскости небесного экватора, равным 23,5°). Существует также другая компонента этой вариации, направленная вдоль оси восток — запад и вызванная увеличением скорости орбитального движения Земли при её приближении к перигелию и уменьшением — при приближении к афелию. Первое из этих движений (север — юг) является причиной смены времён года.
Солнце — магнитно активная звезда. Она обладает сильным магнитным полем, напряжённость которого меняется со временем, и которое меняет направление приблизительно каждые 11 лет, во время солнечного максимума. Вариации магнитного поля Солнца вызывает разнообразные эффекты, совокупность которых называется солнечной активностью и включает в себя такие явления как солнечные пятна, солнечные вспышки, вариации солнечного ветра и т. д., а на Земле вызывает полярные сияния в высоких и средних широтах и геомагнитные бури, которые негативно сказываются на работе средств связи, средств передачи электроэнергии, а также негативно воздействует на живые организмы, вызывая у людей головную боль и плохое самочувствие (у людей, чувствительных к магнитным бурям). Предполагается, что солнечная активность играет большую роль в формировании и развитии Солнечной системы. Она также оказывает влияние на структуру земной внешней атмосферы.

Жизненный цикл

Солнце является молодой звездой третьего поколения (популяции I) с высоким содержанием металлов, то есть оно образовалось из останков звёзд первого и второго поколений, (соответственно популяций III и II).
Текущий возраст Солнца (точнее — время его существования на главной последовательности), оценённый с помощью компьютерных моделей звёздной эволюции, равен приблизительно 4,57 миллиарда лет.
Считается, что Солнце сформировалось примерно 4,59 миллиарда лет назад, когда быстрое сжатие под действием сил гравитации облака молекулярного водорода привело к образованию в нашей области Галактики звезды первого типа звёздного населения типа Тау Тельца (англ.).
Звезда такой массы, как Солнце, должна существовать на главной последовательности в общей сложности примерно 10 миллиардов лет. Таким образом, сейчас Солнце находится примерно в середине своего жизненного цикла. На современном этапе в солнечном ядре идут термоядерные реакции превращения водорода в гелий. Каждую секунду в ядре Солнца около 4 миллионов тонн вещества превращается в лучистую энергию, в результате чего генерируется солнечное излучение и поток солнечных нейтрино.
Масса Солнца недостаточна для того, чтобы его эволюция завершилась взрывом сверхновой. Вместо этого, через 4–5 миллиардов лет оно превратится в звезду типа красный гигант. По мере того, как водородное топливо в ядре будет выгорать, его внешняя оболочка будет расширяться, а ядро — сжиматься и нагреваться. Примерно через 7,8 миллиарда лет, когда температура в ядре достигнет приблизительно 100 миллионов градусов, в нём начнётся термоядерная реакция синтеза углерода и кислорода из гелия. На этой фазы развития температурные неустойчивости внутри Солнца приведут к тому, что оно начнёт терять массу. По-видимому, расширяющиеся внешние слои Солнца в это время достигнут современной орбиты Земли. При этом исследования показывают, что ещё до этого момента потеря Солнцем массы приведёт к тому, что Земля перейдёт на более далёкую от Солнца орбиту и, таким образом, избежит поглощения внешними слоями солнечной плазмы.
Несмотря на это, вся вода на Земле перейдёт в газообразное состояние, а большая часть её атмосферы рассеется в космическое пространство. Увеличение температуры Солнца в этот период таково, что в течение следующих 500–700 миллионов лет поверхность Земли будет слишком горяча для того, чтобы на ней могла существовать жизнь в её современном понимании. В связи с этим, для выживания человечества станут несомненно актуальными межзвездные полеты.
Солнце

После того, как Солнце пройдёт фазу красного гиганта, термические пульсации приведут к тому, что его внешняя оболочка будет сорвана и из неё образуется планетарная туманность. В центре этой туманности останется сформированная из очень горячего ядра Солнца звезда типа белый карлик, которая в течение многих миллиардов лет будет постепенно остывать и угасать.
Описанный выше сценарий эволюции Солнца типичен для звёзд малой и средней массы.

Структура


Внутреннее строение Солнца

Солнечное ядро

Центральная часть Солнца с радиусом примерно 150 000 километров, в которой идут термоядерные реакции, называется солнечным ядром. Плотность вещества в ядре составляет примерно 150 000 кг/м³ (в 150 раз выше плотности воды и в ~6,6 раз выше плотности самого тяжёлого металла на Земле — иридия), а температура в центре ядра — более 14 миллионов градусов. Анализ данных, проведённый миссией SOHO, показал, что в ядре скорость вращения Солнца вокруг своей оси значительно выше, чем на поверхности. В ядре осуществляется протон-протонная термоядерная реакция, в результате которой из четырёх протонов образуется гелий-4. При этом каждую секунду в энергию превращаются 4,26 миллиона тонн вещества, однако эта величина ничтожна по сравнению с массой Солнца — 2·1027 тонн.pic
Солнце

Строение Солнца. В центре Солнца находится солнечное ядро. Фотосфера — это видимая поверхность Солнца, которая и является основным источником излучения. Солнце окружает солнечная корона, которая имеет очень высокую температуру, однако она крайне разрежена, поэтому видима невооруженным глазом только в периоды полного солнечного затмения.

Зона лучистого переноса

Над ядром, на расстояниях около 0,2–0,7 радиуса Солнца от его центра, находится зона лучистого переноса, в которой отсутствуют макроскопические движения, энергия переносится с помощью переизлучения фотонов.

Конвективная зона Солнца

Ближе к поверхности Солнца возникает вихревое перемешивание плазмы, и перенос энергии к поверхности совершается преимущественно движениями самого вещества. Такой способ передачи энергии называется конвекцией, а подповерхностный слой Солнца, толщиной примерно 200 000 км, где она происходит — конвективной зоной. По современным данным, её роль в физике солнечных процессов исключительно велика, так как именно в ней зарождаются разнообразные движения солнечного вещества и магнитные поля.

Атмосфера Солнца

Фотосфера

Фотосфера (слой, излучающий свет) достигает толщины ~320 км и образует видимую поверхность Солнца. Из фотосферы исходит основная часть оптического (видимого) излучения Солнца, излучение же из более глубоких слоёв до неё уже не доходит. Температура в фотосфере достигает в среднем 5800 К. Здесь средняя плотность газа составляет менее 1/1000 плотности земного воздуха, а температура по мере приближения к внешнему краю фотосферы уменьшается до 4800 К. Водород при таких условиях сохраняется почти полностью в нейтральном состоянии. Фотосфера образует видимую поверхность Солнца, от которой определяются размеры Солнца, расстояние от поверхности Солнца и т. д.

Солнце

Изображение поверхности и короны Солнца, полученное Солнечным Оптическом Телескопом (SOT) на борту спутника Hinode. Изображение получено 12 января 2007 года.


Хромосфера

Хромосфера (от др.-греч. χρομα — цвет, σφαίρα — шар, сфера) — внешняя оболочка Солнца толщиной около 10 000 км, окружающая фотосферу. Происхождение названия этой части солнечной атмосферы связано с её красноватым цветом, вызванным тем, что в её видимом спектре доминирует красная H-альфа линия излучения водорода. Верхняя граница хромосферы не имеет выраженной гладкой поверхности, из неё постоянно происходят горячие выбросы, называемые спикулами (из-за этого в конце XIX века итальянский астроном Секки (англ.), наблюдая хромосферу в телескоп, сравнил её с горящими прериями). Температура хромосферы увеличивается с высотой от 4000 до 15 000 градусов.
Плотность хромосферы невелика, поэтому яркость её недостаточна, чтобы наблюдать её в обычных условиях. Но при полном солнечном затмении, когда Луна закрывает яркую фотосферу, расположенная над ней хромосфера становится видимой и светится красным цветом. Её можно также наблюдать в любое время с помощью специальных узкополосных оптических фильтров.

Корона

Корона — последняя внешняя оболочка Солнца. Несмотря на её очень высокую температуру, от 600 000 до 5 000 000 градусов, она видна невооружённым глазом только во время полного солнечного затмения, так как плотность вещества в короне мала, а потому невелика и её яркость. Необычайно интенсивный нагрев этого слоя вызван, по-видимому, магнитным эффектом и воздействием ударных волн (см. Проблема нагрева короны). Форма короны меняется в зависимости от фазы цикла солнечной активности: в периоды максимальной активности она имеет округлую форму, а в минимуме — вытянута вдоль солнечного экватора. Поскольку температура короны очень велика, она интенсивно излучает в ультрафиолетовом и рентгеновском диапазонах. Эти излучения не проходят сквозь земную атмосферу, но в последнее время появилась возможность изучать их с помощью космических аппаратов. Излучение в разных областях короны происходит неравномерно. Существуют горячие активные и спокойные области, а также корональные дыры с относительно невысокой температурой в 600 000 градусов, из которых в пространство выходят магнитные силовые линии. Такая («открытая») магнитная конфигурация позволяет частицам беспрепятственно покидать Солнце, поэтому солнечный ветер испускается в основном из корональных дыр.

Солнечный ветер

Из внешней части солнечной короны истекает солнечный ветер — поток ионизированных частиц (в основном протонов, электронов и α-частиц), имеющий скорость 300–1200 км/с и распространяющийся, с постепенным уменьшением своей плотности, до границ гелиосферы.
Многие природные явления на Земле связаны с возмущениями в солнечном ветре, в том числе геомагнитные бури и полярные сияния.

Теоретические проблемы

Проблема солнечных нейтрино

Ядерные реакции, происходящие в ядре Солнца, приводят к образованию большого количества электронных нейтрино. При этом измерения потока нейтрино на Земле, которые постоянно производятся с конца 1960-х годов, показали, что количество регистрируемых там солнечных электронных нейтрино приблизительно в два-три раза меньше, чем предсказывает стандартная солнечная модель, описывающая процессы в Солнце. Это рассогласование между экспериментом и теорией получило название «проблема солнечных нейтрино» и более 30 лет было одной из загадок солнечной физики. Положение осложнялось тем, что нейтрино крайне слабо взаимодействует с веществом, и создание нейтринного детектора, который способен достаточно точно измерить поток нейтрино даже такой мощности, как исходящий от Солнца — достаточно непростая научная задача.
Предлагалось два главных пути решения проблемы солнечных нейтрино. Во-первых, можно было модифицировать модель Солнца таким образом, чтобы уменьшить предполагаемую температуру в его ядре и, следовательно, поток излучаемых Солнцем нейтрино. Во-вторых, можно было предположить, что часть электронных нейтрино, излучаемых ядром Солнца, при движении к Земле превращается в нерегистрируемые обычными детекторами нейтрино других поколений (мюонные и тау-нейтрино). Сегодня понятно, что правильным, скорее всего, является второй путь.
Для того, чтобы имел место переход одного сорта нейтрино в другой — так называемые «нейтринные осцилляции» — нейтрино должно иметь отличную от нуля массу. В настоящее время установлено, что это действительно так. В 2001 году в нейтринной обсерватории в Садбери (Sudbury Neutrino Observatory) были непосредственно зарегистрированы солнечные нейтрино всех трёх сортов и было показано, что их полный поток согласуется со стандартной солнечной моделью. При этом только около трети долетающих до Земли нейтрино оказывается электронными. Это количество согласуется с теорией, которая предсказывает переход электронных нейтрино в нейтрино другого поколения как в вакууме (собственно «нейтринные осцилляции»), так в солнечном веществе («эффект Михеева-Смирнова-Вольфенштейна»). Таким образом, в настоящее время проблема солнечных нейтрино, по-видимому, решена.

Проблема нагрева короны

Над видимой поверхностью Солнца (фотосферой), имеющей температуру около 6 000 K, находится солнечная корона с температурой более 1 000 000 K. Можно показать, что прямого потока тепла из фотосферы недостаточно для того, чтобы привести к такой высокой температуре короны.
Предполагается, что энергия для нагрева короны поставляется турбулентными движениями подфотосферной конвективной зоны. При этом для переноса энергии в корону предложено два механизма. Во-первых, это волновое нагревание — звук и магнитогидродинамические волны, генерируемые в турбулентной конвективной зоне, распространяются в корону и там рассеиваются, при этом их энергия переходит в тепловую энергию корональной плазмы. Альтернативный механизм — магнитное нагревание, при котором магнитная энергия, непрерывно генерируемая фотосферными движениями, высвобождается путём пересоединения магнитного поля в форме больших солнечных вспышек или же большого количества мелких вспышек.
В настоящий момент неясно, какой тип волн обеспечивает эффективный механизм нагрева короны. Можно показать, что все волны, кроме магнитогидродинамических альвеновских, рассеиваются или отражаются до того, как достигнут короны[15], диссипация же альвеновских волн в короне затруднена. Поэтому современные исследователи сконцентрировали основное внимание на механизм нагревания с помощью солнечных вспышек. Один из возможных кандидатов в источники нагрева короны — непрерывно происходящие мелкомасштабные вспышки, хотя окончательная ясность в этом вопросе ещё не достигнута.
1
1507
15 октября 2008
Уважаемый посетитель, Вы зашли на сайт как незарегистрированный пользователь. Мы рекомендуем Вам зарегистрироваться либо зайти на сайт под своим именем.
Смотрите также
На Солнце произошли крупнейшие в этом году выбросы веществаНа Солнце произошли крупнейшие в этом году выбросы вещества

Крупнейшие за последний год выбросы вещества из атмосферы Солнца были зарегистрированы космическими телескопами ТЕСИС на борту спутника КОРОНАС-ФОТОН....

На Солнце обнаружены ранее неизвестные магнитные волны На Солнце обнаружены ранее неизвестные магнитные волны

Ранее неизвестные магнитные колебания были обнаружены во внешней оболочке солнечной атмосферы, также известной как солнечная корона. Данные магнитные...

На Солнце зафиксирован гигантский выброс плазмыНа Солнце зафиксирован гигантский выброс плазмы

С поверхности Солнца извергается магнитный поток солнечной плазмы с температурой в несколько десятков тысяч градусов. Длина выброса в 50 раз превышает...

Интересные факты о солнцеИнтересные факты о солнце

Мы радуемся, когда видим, что день будет солнечным и огорчаемся, когда небо затянуто тучами. Согласно исследованиям, пасмурная погода в течение трех д...

Загрузка...
Комментарии

Tugcrereled
21 июня 2011 09:16
Если вы решились скачать utorrent , постарайтесь быть готовым к различным
неожидоннастям, начиная от забравшегося в ваш компьютер вируса и заказнчивая
настойчивым стуком в вашу дверь от милицейского патруля, который имеет ордер, чтобы изъять
ваш ноутбук и проверить его на наличие нелицензионных программ.
Посетители, находящиеся в группе Гости, не могут оставлять комментарии в данной новости.
Понедельник, 05 Декабря
USD 1.9706
EUR 2.0897
RUB 0.0308
LoLtEam 4 минут назад Gibson / 939 Martin / "Brownie"
За эти деньги проще дом близ Чикаго купить, ещё и на новую такую на полном тюнинге останется)
Red_Army 8 минут назад
Цитата: 26-128
Почему окупанскими? Вроде же его туда пригласило законное правительство Сирии.

Потому что для маба цензор тоже что для верующего библия.
Oznet 9 минут назад пусть все оккупанты сдохнут))
и американские и бывшие украинские а ныне российские и турецкие великие воины)))
vasabt 18 минут назад Парень просто мудак, даже если они были бы женаты (а это не так), то каждый имеет право на частную ЛИЧНУЮ жизнь. Она сама вправе выбирать с кем и как жить.


BHy4ka,
А что прости она сделела? Познакомилась с интересным человеком и захотела новых отношений? Это теперь непозволительно.
aroy 25 минут назад
Цитата: Mab
Это ты шакал.

это ты, это ты, жопой нюхаешь цветы, мабка-застабил !!
Mab 25 минут назад
Цитата: aroy
Шлюха.

Это ты шакал.

Московские школьники довели до попытки суицида беженца из Донбасса из-за его украинского происхождения. ФОТО

Московские школьники довели до суицида своего одноклассника, переехавшего учиться в Москву с неподконтрольной Украине территории Донбасса.
17-летний переселенец по имени Данил перерезал вены на руках, однако вовремя был доставлен в больницу и остался жив.
"В школе травля началась в прошлом году, все кричали, что я украинец, и обзывали меня. Они обзывали и били меня каждую перемену. Бывшая классная руководительница была в курсе, но она мне никогда не помогала. Шмыков, Баранов, Лопатин - вот фамилии тех, кто постоянно издевался надо мной. Кричали при этом "Слава Украине!".

Это не первый подобный случай в России. 23 декабря прошлого года покончил жизнь самоубийством 18-летний Влад Колесников из Жигулевска (Самарская область), которого также травили из-за его выступления в защиту Украины. Колесникова исключили из техникума после того, как он явился на занятия в футболке с надписью "Вернуть Крым!".

После этого, устав терпеть угрозы и оскорбления людей, Колесников принял смертельную дозу медикаментов. Спасти его не удалось.

И вот-таких жертв путлеровских руссофашистов в России тысячи.
гном_Вася 29 минут назад
Цитата: западная ведьма
васька злая,

с тобой не сравниться)))
aroy 30 минут назад
Цитата: Mab
Это ты вертишься как шакал, не знаешь с какой стороны укусить.

че сорвался на истеричный визг, пи%ор? сначала пишет ху%ню, а потом вертится и корректирует собственные комменты. Шлюха.
Новости от партнеров

ИНТЕРЕСНОЕ:

Загрузка...
Сейчас на сайте
74 пользователя, 1531 гость